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Manganese contributions to the elastic 
constants of face centred cubic Fe-Cr -Ni  
stainless steel 

H. M. LEDBETTER 
Fracture and Deformation Division, National Bureau of Standards, Boulder, 
Colorado 80303, USA 

We determined experimentally the effect of manganese on the elastic constants of 
face centred cubic Fe-Cr-Ni  alloys with chemical compositions near 304,type 
stainless steel. By a pulse-echo-overlap method, longitudinal and transverse sound- 
wave velocities were determined in ten alloys containing up to 6% manganese. All 
the elastic stiffnesses decrease linearly with increasing manganese. The bulk 
modulus decreases most strongly. Poisson's ratio changes least. We consider what 
the elastic constants reveal concerning changes in chemical bonding, caused by 
manganese additions. 

1. I n t r o d u c t i o n  
Manganese decreases the elastic stiffness of  b c c 
iron [1]. Studies of alloys containing up to 
10a t% manganese show a linear decrease in 
both Young's modulus, E, and the shear 
modulus, G. The decrease amounts to approxi- 
mately 0.3% per at % mavganese. Vegard's law 
predicts a 0.06% decrease for G and a 0.65% 
decrease for the bulk modulus, B. 

Effects of manganese on the elastic stiffness of 
f c c  iron remain unknown. Manganese's 
peculiar elemental properties - a 58 atom unit 
cell, a bulk modulus 0.35 that of  iron, anti- 
ferromagnetic electronic interactions, negative 
low-temperature thermal expansivity - pre- 
clude any reliable predictions of  such effects. 
Despite the proximity of manganese and iron in 
the first long row of  the periodic table of  ele- 
ments, their properties differ dramatically; man- 
ganese dissolved in iron may behave very dif- 
ferently from manganese dissolved in man- 
ganese. Iron's f c c  elastic constants remain 
unknown. Here, we assume that they do not 
differ significantly from those of  f c c  nickel; 
because the atomic volume of iron exceeds that 
of nickel by 8%, fc  c iron may be slightly softer 
elastically. From available elastic constants of  

f c c  nickel and a-manganese, Vegard's law 
predicts that manganese lowers all the elastic 
stiffnesses and Poisson's ratio, v: B by 0.33%, E 
by 0.18%, G by 0.18%, and v by 0.16%. 

Face centred cubic F e - C r - N i  alloys provide 
the basis for commercial stainless steels. Mang- 
anese also occurs in such steels, mainly to 
improve fabricability and weldability. 

Effects of manganese on the elastic properties 
of Fe-Cr-Ni  alloys remain undetermined. Such 
knowledge of  basic mechanical-physical proper- 
ties underlies any modelling of  macroscopic 
mechanical properties such as strength and 
toughness. 

The present study sought to determine how 
manganese affects the polycrystalline elastic 
constants of  Fe-Cr-Ni  alloys containing up to 
6% manganese. Such results would test the con- 
jecture [2] that these alloys should "show large 
changes in their elastic moduli as functions of  
composition". Complete sets of polycrystalline 
elastic constants were determined: Young's 
modulus, shear modulus, bulk modulus, and 
Poisson's ratio. The experimental approach con- 
sisted of  measuring longitudinal and transverse 
sound velocities using a pulse-echo-overlap 
method. 
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One may ask also whether manganese affects 
chemical bonding in Fe -Cr -Ni  alloys. As des- 
cribed above, manganese is truly a maverick 
metallic element. In considering chemical bond- 
ing in both nonmetals and metals, Pauling [3] 
referred to "the anomalous Mn radius" and to 
the "striking abnormality in behaviour" of  
manganese. We know that elastic stiffness 
depends relatively sensitively on atomic radius, 
r, varying a s  r -4.  Thus, the larger atomic volume 
of  manganese arising from magnetic repulsions 
explains in part its lower elastic stiffness. 

2. Experimental details 
2.1. Materials 
All alloys are manganese-modified type-304LN 
face centred cubic stainless steels. Custom- 
composition alloys were obtained from a com- 
mercial steel company in the form of plates 
approximately 2.5 cm by 14 cm by 41 cm. 

Each plate was hot rolled at approximately 
1175 ~ C (2150~ annealed for 0.5 h at 1065 ~ C 
(1950~ water quenched, and acid pickled. 
Table I shows chemical composition, hardness, 
mass density, and grain size. Grain size was 
measured in the plane perpendicular to the 
transverse plate direction. 

2.2. M e t h o d s  
Sound velocities were determined by a method 
described in detail previously [4]. Briefly, 1.5 cm 
cubes were prepared by grinding so that 
opposite faces were flat and parallel within 5/~m. 
Quartz piezoelectric crystals with fundamental 
resonances between 4 and 7 MHz were cemented 
with phenyl salicylate to the specimens. An x-cut 
transducer was used for longitudinal waves and 
an a.c.-cut for transverse waves. Ultrasonic 

pulses 1 to 2 cycles long were launched into the 
specimen by electrically exciting the transducer. 
The pulses propagated through the specimen, 
reflected from the opposite face, and propagated 
back and forth. The pulse echoes were detected 
by the transducer and displayed on an oscillo- 
scope equipped with a time delay and a micro- 
processor for time-interval measurements. The 
sound velocity was computed by 

v = 2 t / t  (1) 

where l denotes specimen length, and t the 
round-trip transit time. On the oscilloscope, t 
was the time between adjacent echoes, the first 
and second echoes usually being measured, and 
within these the time between leading cycles. 
Elastic constants were computed from the 
general relationship 

C = Ov 2 (2) 

where 0 denotes mass density. The usual engin- 
eering elastic constants are related to the longi- 
tudinal and transverse sound velocities, vl and 
vt, by 

longitudinal modulus = Cl = cv 2 (3) 

shear modulus = G = Ov~ (4) 

bulk modulus = B = C 1 -  (4/3)G (5) 

Young's modulus = E = 3GB/(C~ --  G )  (6) 

Poisson's ratio = v = ( E / 2 G )  -- 1 (7) 

= (1/2)(C1 - 2G) / (C1  - G )  

3. Results  
For two alloys, Table II gives the variation of  
sound velocities and elastic constants with 
direction. In this table, n denotes propagation 

T A B L E  I Chemical composition (wt %), hardness,  grain size, and mass  density 

Mn Cr Ni C N P S Si Mo Cu Hardness  
(Rockwell B) 

Grain 
size 
(ASTM No.) 

Mass  
density 
(gcm -3) 

1 1.02 18.19 8.68 0,025 0.11 0.022 0.013 0.53 0.32 
2 1.19 19.36 7.81 0,025 0.19 0,023 0,015 0.60 0.32 
3 2.00 18.10 8.66 0,028 0.I1 0.021 0.013 0.63 0.31 
4 2.01 19.35 7.89 0,022 0.19 0.023 0.013 0.64 0.32 
5 3.85 18.22 8.70 0,025 0.11 0,023 0.013 0.59 0.31 
6 3.85 19.25 7.84 0.024 0.19 0.022 0.014 0.65 0.31 
7 4.03 18,71 8.22 0,023 0.15 0.023 0.014 0.62 0.31 
8 5.79 19.48 7.83 0.024 0.21 0.024 0.014 0.61 0.31 
9 5.80 18.42 8.29 0.031 0.15 0.024 0.014 0.62 0.31 

10 5.81 18.06 8.62 0.021 0.11 0.023 0.014 0.64 0.33 

0.30 82 
0.28 88 
0.28 88 
0.30 94 
0.29 84 
0.29 90 
0.30 89 
0.30 90 
0.30 90 
0.30 84 

5.4 
5.5 
5.5 
5.5 
5.8 
5,6 
5.6 
5.6 
5.6 
5.4 

7.925 
7.873 
7.884 
7,862 
7,878 
7.850 
7.862 
7.827 
7.885 
7.881 
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T A B  L E I I Directional variation of  sound velocities and elastic constants  

Alloy n p Velocity C I G 
(cm#sec E) (1011Nm-2) (1011 N m -2) 

1 1 00 l 00  0.576 2.631 
0 1 0 0.314 0.780 
00 1 0.315 0.784 

0 1 0 0 1 0 0.576 2.628 
100 0.314 0.780 
00 1 0.315 0.785 

00 1 00 1 0.576 2.622 
1 0 0 0.314 0.783 
010 0.314 0.784 

10 100 1 00  0.572 2.579 
0 1 0 0.314 0.778 
00 1 0.314 0.773 

0 1 0 0 1 0 0.572 2.580 
1 0 0 0.313 0.771 
00 1 0.313 0.772 

0 1 0 00 1 0.572 2.576 
1 00 0.314 0.778 
0 1 0 0.313 0.773 

direction and p denotes polarization direction. 
Table III contains the principal results of the 
study: for ten alloys the longitudinal and trans- 
verse sound velocities, Vl and vt, and the various 
elastic constants C~, G, B, E, v are defined in 
Equations 3 to 7. Fig. 1 shows these constants as 
a function of manganese concentration. Esti- 
mated uncertainties of measured elastic constants 
are 1% or less. Thus, the scatter shown in Fig. 1 
does not arise from experimental error. Some of  
the scatter must arise from chromium and nickel 
variations among the alloys. Table IV contains 
the results of linear least-squares fits to these 
compositional changes. In this table, a and b 
have units of  the elastic constants. The dimen- 
sionless ratio b/a gives the quantity (1/y)(dy/dx) 
at x = 0, the fractional change in the elastic 
constant due to alloying. Also included in Table 
IV are predicted values of  b/a based on Vegard's 

law and handbook elastic constants for nickel 
and manganese. (Elastic constants of  f c c  iron 
are not available.) 

4. Discussion 
First, we consider the possibility of texture. 
Results in Table II indicate the absence of  tex- 
ture in these alloys. For  alloy 10, for example, in 
three orthogonal directions (corresponding to 
the rolling direction, transverse direction, and 
through-thickness direction) the longitudinal 
modulus varies less than 0.1% and the shear 
modulus less than 0.4%. These results agree with 
those reported previously for 304 stainless steel 
[4]. In these alloys the Zener anisotropy ratio 
A = 2 C 4 4 / ( C l l  - Cl2 ) is approximately 3.5 [5], 
that is, moderately high. Thus, significant tex- 
ture would evidence itself in the elastic con- 
stants. Recent calculations by Ledbetter [6] 

T A B L E I I 1 Sound velocities and elastic constants  for ten manganese-alloyed stainless-steel-304~type alloys 

Alloy Mn ( % )  vj v t C l G B E v B / G  

(cm/~sec-1) ( cm#sec - i )  (10UNto-2)  ( 1 0 U N m  2) (1011Nm 2) (1011Nm-2) 

1 1.02 0.575 0.315 2.622 0.784 1.577 2.017 0.287 2.011 
2 1.19 0.577 0.315 2.621 0.779 1.583 2.007 0.289 2.032 
3 2.00 0.574 0.315 2.601 0.783 1.558 2.011 0.285 1.990 
4 2.01 0.576 0.315 2.609 0.778 1.573 2.003 0.288 2.022 
5 3.85 0.574 0.314 2.594 0.778 1.556 2.001 0.286 2.000 
6 3.85 0.575 0.314 2.592 0.775 1.559 1.993 0.287 2.012 
7 4.03 0.574 0.314 2.586 0.775 1.552 1.994 0.286 2.003 
8 5.79 0.573 0.314 2.571 0.772 1.541 1.985 0.285 1.996 
9 5.80 0.572 0.314 2.573 0.775 1.539 1.922 0.284 1.986 

10 5.81 0.572 0.313 2.576 0.772 1.546 1.987 0.286 2.003 
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Figure 1 Compos i t iona l  va r ia t ion  of  elastic cons tants  o f  

Fe  C r - N i  alloys conta in ing  manganese .  U n i t s  on  E, B, and  

G are l0 I 1 N m  -2, v is dimensionless.  

concerning the elastic constants of textured 
aggregates show that for 304 stainless steel along 
principal axes, fibre textures such as (100 ) ,  
( 1 1 0), and (1 1 1 ) change C~ an average of 11% 
and G an average of 19%. These elastic con- 
stants can be measured readily within a fraction 
of a percent. We ascribe the lack of texture to the 
thermomechanical treatment: annealing after 
hot deformation, without recrystallization. 

We consider now what the elastic constants 
reveal concerning changes in the chemical bond 
when manganese is alloyed substitutionally into 
the fc c Fe-Cr-Ni  matrix. Essentially, we look 
for changes in the degree of covalent bonding, 
which manifests itself as a resistance to bond 

bending, a manifestation of many-body forces. 
K6ster and Franz [7] concluded that "Poisson's 
ratio depends to a much greater extent on the 
conditions of bonding than do the other elastic 
coefficients". This assertion remains without 
theoretical basis, probably because theory does 
not predict directly the Poisson ratio, which is 
the negative ratio of two fourth-rank elastic 
compliances, -Si~::/S~,, where primes denote 
rotation of the coordinate system. 

For quasi-isotropic solids, Poisson's ratio is a 
scalar that relates simply to the bulk and shear 
moduli: 

v = (1/2)(3B - 2 G ) / ( 3 B  + G) 

= (1/2)(3y - 2)/(3y + 1) (8) 

where y is defined to be BIG. Thus, the depen- 
dence of v can be studied parametrically as the 
dependence of y. For cubic elements, Leibfried 
and Breuer [8] give a graph of B/C44 against 
elastic anisotropy, C44 being one of the usual two 
cubic-crystal elastic shear moduli. They point 
out that purely longitudinal first-neighbour 
spring interactions require that B/C44 = 4/3. 
For Voigt averaging, the equivalent ratio for 
polycrystals is B/G = 5/3; for Reuss averaging 
it is 28/15; thus, the Hill arithmetic average is 
BIG = 280/159 = 1.76'. Departure from this 
ratio indicates that many-body forces occur in 
the solid. In terms of a force-constant model, 
this means that bond-bending forces must occur 
along with more familiar bond-stretching (bond- 
compressing) forces. One should note that from 
Equation 8 it follows that BIG is a more sensitive 
parameter than v because for typical v values 
dv/v ~- (1/2)dy/y. 

Examination of Table III shows that BIG = 
2.005 ___ 0.014 for all ten alloys. Thus, the 
marked departure from a value of 1.76 shows 
that many-body forces occur in these alloys. 
That many-body forces exist in transition-metal 
alloys is already well known [9]. The surprising 
result is that the ratio is nearly constant for all 
alloys, indicating no significant change in the 

T A B L E  I V  Compos i t iona l  va r ia t ion  o f  elastic cons tan ts  based  on  y = a + b x  type relat ionship 

y a b b/a b/a (Vegard)  

G 0.783 - 1 . 7 7  • 10 -3 - 2 . 2 6  x 10 -3 - 1 . 7 9  • 10 -3 

B 1.585 - -7 .43  x 10 -3 - -4 .69  x 10 -3 --3.31 • 10 -3 

E 2.017 - -5 .20  • 10 -3 - -2 .58  • 10 -3 - -1 .75  • 10 -3 

v 0.288 - -0 .47  • 10 3 - -1 .62  x 10 -3 - -1 .59  • 10 -3 
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character of  the chemical bonding. Table III 
shows that the Poisson's ratio is also nearly 
invariant with manganese content: v = 0.286 + 
0.001, but also different from the v = 0.261 
predicted for longitudinal-force-constant-only 
bonding. As described above, BIG and v must 
behave similarly. (The Appendix explores more 
fully the force-constant viewpoint.) 

In terms of the single-crystal cubic-symmetry 
elastic constants C l l  , C12 , and C44, this means 
that CI2/C. must be nearly constant. This 
follows because the usual crystal-axis Poisson's 
ratio is 

S12 = Cl2 = Y (9) 
v - S .  Cll + Cn 1 + y 

where y = C12/Cll. 

5. Conclusions 
1. Alloying manganese into a stainless-steel- 

304-type Fe-Cr -Ni  alloy decreases all the elastic 
stiffness constants. 

2. The bulk modulus decreases most, reflect- 
ing the high compressibility of  manganese 
atoms. 

3. Poisson's ratio and the B/G ratio both vary 
slowly with manganese concentration. This indi- 
cates that manganese does not change the nature 
of  the chemical bonding. The unusual bonding 
characteristics and magnetic properties of  mang- 
anese lead one to expect possible changes. 

4. By factoring into force constants, the 
relationship of  many-body forces to elastic con- 
stants and bonding becomes more clear. 
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Appendix: force-constant approach 
One always profits from considering elastic con- 
stants in terms of  force constants, which relate 
more directly to forces between pairs of  atoms in 
solids. Many force-constant models exist [10]. 
For  fc  c lattices, Leibfried and Breuer ([8] p. 42) 
consider a three-force-constant model sum- 
marized in Fig. 2. The three parameters consist 
of  a longitudinal spring, f~, and two different 
transverse springs, fz and f3, corresponding to 
bending along [001] and [110], respectively. 

t, 
. . . . .  [ , ,o] 

Figure 2 Face centred cubic unit cell showing eigenvectors 
and eigenvalues of the coupling matrices to the nearest- 
neighbour atoms at [�89189 positions. 

The coupling matrix for this model is 

(A1) 

Physically, q~] denotes the force in the i direc- 
tion on the atom at the origin when the atom at 
d is displaced a unit length in direction j. If  the 
displacement vector corresponds to an eigenvec- 
tor, then - ~blf I corresponds to a spring constant. 
By symmetry, q~l~ lOl "CjigD[11 O] and (]~11l O] (h[llO] 

~- W'22 �9 

Components such as q~l~3 ~ 01 vanish because force 
and displacement are perpendicular, thus no 
coupling. Diagonalization of  q~ij gives three 
eigenvalues: 

fl  = c~ + fl (A2) 

f2 = 7 (A3) 

f3 = c~ - fl (A4) 

Leibfried and Breuer relate the fs to the six 
eigenvalues of  the 6 x 6 Voigt C~ matrix: 

a 1 2 4 
fl  = ~ ( 4 C  + 2C + 3C) (A5) 

a l 2 4 
f2 = ~-~ ( - - C  - 2C + 3C) (A6) 

= - a 7 )  

where a denotes cubic unit-cell size. 
From the cubic-symmetry invariants, 

1 

C = C i l  -F 2C12  (A8) 
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2 3 
C = C = C u -  C12 (A9) 
4 5 6 
C = C = C = 2C44 ( A 1 0 )  

the fs relate to the Voigt Cus: 
a 

f, = ~ (c,~ + c,~ + c44) (Al l )  

a 
f~ = ~ ( - -CH + 2C44) (A12) 

a 
f3 --- ~ ( C ~ l -  C12-  C44) (A13) 

and vice versa: 

C,, = _1 (2fl + 2f3) (A14) 
a 

C~ = 1 ~  _ 2 A _  3f3) (A15) 
a 

1 
C44 - ~ + 2f2 + f3) (A16) 

a 

More interesting physical C,j combinations are: 

(Cu - Cj2) = 1 ~  + 2f  2 + 5f3)(A17) 
a 

( C  H + 2 C , 2  ) __. L (4f~ - -  4f2 - -  4 f 3 )  a 
(A18) 

(C~2-  C44) = l ( _ 4 f  2 _ 4f3) (A19) 
a 

A = 2 C 4 4 / ( C , 1 -  C,2  ) 

(2f~ + 4f2 + 2f3)/(f] + 2fz + 5f3) 

(A20) 

(Cu -- C12 -- 2C44) 

1 
= - ( - f l  - 2f2 + 3f3) (A21) 

a 

Cu - C~2 is the resistance to shear on a [1 1 0]- 
type plane in a [i 1 0]-type direction. Since this 
deformation involves both bond stretching (and 
shortening) and bond bending, not surprisingly 
it includesfl,f2 and f3. Cu + 2C12 is three times 
the bulk modulus (reciprocal compressibility). 
Since uniform dilatation changes bond lengths 
but not bond angles, it may seem surprising that 
B depends on f2 and f3 in addition to f l .  This 
occurs because the spring constants f2 and f3 
relate also to many-body forces. (Recall that the 
third-order perturbation theory calculation of 
Axilrod and Teller [11] for interactions between 
triplets of atoms contained three interatomic 
distances - rl2, r23, r]3 - -  and three included 

angles - ]/1, ])2, ]/3 - -  with ]/i being the angle 
between rq and r~k. ) Cl2  - -  C44 is the Cauchy 
(noncentral-force) discrepancy for cubic crys- 
tals. Thus, if accidentally fz = - f3 ,  then the 
material will appear to have central forces by the 
familiar Cauchy criterion C12 -- C44. Thus, this 
criterion is necessary but not sufficient. The 
Zener anisotropy ratio, A, depends on all three 
force constants. For vanishing many-body 
forces, A = 2. Thus, departures of A from this 
value also indicate the contribution of many- 
body forces. In summary, vanishing many-body 
forces imply that C1] = 2C]2 = 2C44 = 
4C', where C'  = I (C  u - C~2). Finally, elastic 
isotropy demands that C'  = C44 or that C~t - 
C12 - 2C44 = 0. In terms of force constants, 
isotropy demands that f~ = 3f3 - 2f2, a con- 
dition that arises only accidentally. 

We now consider the polycrystalline case, 
which has two independent elastic constants. 
Following Stokes [12], we choose to consider B 
and G, the elastic constants that represent the 
two extreme types of deformation - pure dila- 
tation (volume change without shape change) 
and pure shear (shape change without volume 
change). For aggregates of cubic crystallites, 
because the bulk modulus is a rotational 
invariant, it is 

B = (CI1 --~ 2C12)/3 (A22) 

For the shear modulus, no unique averaging 
method exists. Many methods using different 
physical principles have been proposed [13]. A 
method due to Hershey [14], Kr6ner  [15], and 
Eshelby [16] is used increasingly. For copper, 
Ledbetter [17] verified that this method agrees 
best with observation. 

For simplicity, we use Voigt 's averaging 
method here. Voigt [18] showed that when the 
aggregate has uniform elastic strain the shear 
modulus of cubic aggregates is 

Gv = (CII - -  C12 -[- 3C44)/5 (A23) 

In terms of force constants: 

4 
Gv = ~a ~ + 2f2 + 2f3) (A24), 

The Reuss [19] shear modulus, based on con- 
stant stress in the aggregate, is 

a R = ~C44 ( C l , -  Cl2)/[~(Cll- C12 ) 

+ 2C44] (A25) 
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T A B L E  A1 For a typical metal, copper, and for stainless steel, relative contributions of three force constants to 
various constants 

Copper Stainless steel 

fl f~ A f~ A 

Cll 1.00 0.00 - 0.08 0.00 - 0.12 
CI2 1.00 0. I0 0.23 - 0.17 0.36 
(744 1.00 - 0 . 1 0  -0 .08  0.17 - 0 . 1 2  
C' 1.00 -0 .10  -0 .38  0.17 -0 .59  
B 1.00 0.05 0.08 - 0.09 0.12 

C12 - C44 0.00 - 1.00 - 1.00 - 1.00 - 1.00 
C11 - Cl2 -- 2C44 --1.00 --0.10 0.23 0.17 0.36 
A 1.00 (0.0)* (0.31) (0.00) (0.47) 
C~2/CH 1.00 (0. I 0) (0.31) ( -- 0,17) (0.47) 

*Parentheses indicate the approximation that both f2/fl andf3/f~ are small relative to unity. 

and must also depend on all three force con- 
stants. 

Consider now a typical m e t a l -  copper, 
where G l = 1.696, C12 = 1.224, and C44 = 
0.754 • 10 H N m  -2. Thus, f l /a  = 0.9185, f2/ 
a = - 0.0470, and f3/a = - 0.0705 in the 
same units. Table A 1 shows how the three force 
constants contribute to various elastic constants 
and to the elastic anisotropy, A. For both A and 
C12/G~, we made the very rough approximation 
that both f2 and f3 are small compared with fl-  
Except for the Cauchy discrepancy, CI2 - C44, 

f~ dominates every elastic constant. As expected, 
many-body effects show most strongly in 
Cl2 - C44, but also strongly in C', A, and C12/ 
C~. The bulk modulus is least sensitive to many- 
body terms. In all cases except C44 the fz force 
constant contributes less than the f3 force con- 
stant; bending out of the (1 00)  plane contri- 
butes less than bending in the plane. Negative f2 
and f3 values apparently imply instabilities with 
respect to bending. But one must remember that 
the bending springs represent many-body, not 
two-body, interactions. Thus, they do not re- 
present simple local effects but, rather, com- 
plicated "environmental", long-range effects. 
Even if all springs are longitudinal and positive, 
a negative transverse spring can arise quite natu- 
rally. 

Table A1 contains results also for f c c  stain- 
less steel. Principal differences are that f2 and f3 
are approximately double those of  copper with 
the sign on f2 being reversed. This means that the 
stainless steel elastic anisotropy is higher (higher 
negative f3). Except for thorium, and plutonium, 
all f c c  elements exhibit a negative f~. Implica- 
tions of a positive f2 remain unclear. Because 

both thorium and plutonium are relatively 
unstable in the fc c structure, a positive f2 may 
indicate a tendency toward structural instability. 
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